Low Standby-Power Primary-Side Converter

General Description

The PN8386F consists of a Low Standby-Power Primary-Side controller and a 650V avalanche-rugged smart power VDMOSFET, specifically designed for a high performance AC/DC charger or adapter with minimal external components. PN8386F operates in primary-side sensing and regulation, so opto-coupler and TL431 could be eliminated. Because of internal HV Start-up circuit, the system with PN8386F can achieve less than 50mW standby power consumption (230VAC). In CV mode, multi-mode technique is utilized to achieve high efficiency, avoid audible noise and make the system meeting Energy star level VI. Good load regulation is achieved by the built-in cable drop compensation. In CC mode, the current and output power setting can be adjusted externally by the sense resistor at CS pin. PN8386F offers complete protections including Cycle-by-Cycle current limiting protection (OCP), over voltage protection (OVP), over temperature protection (OTP) and CS open or short protection (CS O/SP) etc.

Applications

- Switch AC/DC Adapter
- Battery Charger
- Set-top box power supply

Features

- Internal 650 V avalanche-rugged smart power VDMOSFET
- Internal HV Start-up Circuit, Standby power < 50mW (230VAC)
- Multi-mode technique
- ±5% CC/CV Regulation at Universal AC input
- Primary-side Sensing and Regulation without TL431 and Opto-coupler
- Programmable Cable Drop Compensation
- No-need Control Loop Compensation Capacitor
- Excellent Protection include:
 - ♦ Over Temperature Protection (OTP)
 - ♦ VDD Under/Over Voltage Protection(UVLO&OVP)
 - ♦ Cycle-by-Cycle Current Limiting (OCP)
 - ♦ Cs Short/Open Protection (CS O/SP)
 - ♦ Feedback Loop open Protection(OLP)

Typical Circuit

Package/Order Information

Orden eede	Doologo	Typical power	
Order code	Package	85~265VAC	
PN8386FSEC-R1N	SOP8	15W	

<u>Pin Definitions</u>

Pin Name	Pin Number	Pin Function Description
GND	1	Ground
VDD	2	Power supply
FB	3	The voltage feedback from auxiliary winding. Connected to resistor divider from auxiliary winding reflecting output voltage.
CS	4	Current Sense Input
SW	5,6,7,8	Avalanche-rugged power MOSFET Drain pin. The Drain pin is connected to the primary lead of the transformer.

Typical power

Part Number	Input voltage	Adapter ⁽¹⁾
PN8386F	85-265V _{AC}	15W

Note:

1. Maximum output power is tested in an adapter at 45°C ambient temperature, with enough cooling conditions.

Block Diagram

Absolute Maximum Ratings

Supply voltage Pin VDD0.3~40V
Pin CS0.3~5.5V
Pin FB(I _{FB} \leq 10mA)1~5.5V
High-Voltage Pin, SW0.3~650V
Operating Junction Temperature40~150°C
Note: 1.Test standard: JEDEC JS-001-2014.

Storage Temperature Range5	5~150°C
Lead Temperature (Soldering, 10Secs)	260°C
Package Thermal Resistance $\theta_{JC}(SOP8)$	40°C /W
HBM ESD Protection ⁽¹⁾	±3kV
Pulse Drain Current (T _{pulse} =100us)	4A

Electrical Characteristics

PARAMETER	SYMBOL	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Power Section						
Break-down voltage	BV _{DSS}	$I_{SW} = 250 uA, T_J = 25^{\circ}C$	650	700		V
Off-state drain current	Ioff	$V_{sw} = 500V, T_J = 25^{\circ}C$	10	20	50	μΑ
Drain-source on state resistance	R _{DS(on)}	$I_{SW} = 1A$, $T_J = 25^{\circ}C$		2.0		Ω
Start up threshold	V _{SW_START}	V _{DD} =V _{DDon} - 1V		30		V
Supply Voltage Section	1				•	
Operating voltage range	VDD		10		30	V
VDD start up threshold	VDD _{on}		14.5	16.5	18.5	V
VDD under voltage shutdown threshold	VDD _{off}		7.5	8.5	9.5	v
VDD over voltage protect	VDD _{ovp}		30	33	35	V
Supply Current Section	n					
VDD charge current	I _{DD_CH}	VDD=VDD _{on} -1V, Vsw=100V	-1.5	-1.0	-0.5	mA
Operating current, switching	Idd	$VDD = VDD_{on} {+} 1V$	0.1	0.4	0.8	mA
Operating current after fault	Idd_fault	VDD=15V after fault		0.5		mA
Current Sense Section						
Current sense threshold	V _{TH_OC}		485	500	515	mV
Maximum Current sense threshold	V _{TH_OC_MAX}			560		mV
Minimum CS threshold	Vcs_min			170		mV
Leading Edge Blanking time	T _{LEB}			300		ns
Maximum Ton	Tonmax		36	40	49	us
OCP propagation delay	T _{D_OC}			100		ns

 $(T_A = 25^{\circ}C, VDD = 21 V, unless otherwise specified)$

PARAMETER	SYMBOL	CONDITIONS	MIN.	ТҮР.	MAX.	UNIT	
FB Section	FB Section						
Reference voltage for feedback threshold	V _{REF_CV}		2.475	2.5	2.54	V	
Output over voltage protection threshold	V _{FBOVP}		2.85	3	3.15	V	
Output under voltage protection threshold	V _{UVP}			1.55		V	
Maximum cable compensation current	Icable	V _{FB} =0V	44	48	52	uA	
Minimum Toff	Toffmin			5		us	
Maximum Toff	Toffmax			2.2		ms	
Output under voltage protection Blanking time	Tuvp	Fsw= 50kHz	40		64	ms	
Thermal Section	Thermal Section						
Thermal shutdown temperature threshold	T _{SD}		135	150		°C	
Thermal shutdown hysteresis	Тнуут			30		°C	

Typical Characteristics Plots

Functional Description

The PN8386F is a high performance CC/CV primary-side controller. PN8386F operates in primary-side sensing and regulation, so opto-coupler and TL431 could be eliminated. Proprietary built-in CV and CC control can achieve high precision CC/CV control meeting most charger and adapter application requirements. Internal HV Start-up circuit and the chip's low consumption help the system to meet strict standby power standard.

1. HV Start up Control

At start up, the internal high-voltage start-up circuit provides the internal bias and charges the external VDD capacitor, so that PN8386F starts up quickly. When VDD reaches VDD_{on}, the device starts switching and the internal high-voltage current source stops charging the capacitor. The device keeps in normal operation provided as long as VDD keeps above VDD_{off}. After startup, the bias is supplied from the auxiliary transformer winding, the current of HV start-up circuit is designed to be very low so that the power consumption is very low.

2. CC Operation Mode

In CC operation mode, the PN8386F captures the auxiliary flyback signal at FB pin through a resistor dividing-network. The pulse width of the auxiliary flyback signal determines the PN8386F oscillator frequency. The higher the output voltage is, the shorter the pulse width is, and the higher the chip oscillator frequency is, thus the constant output current can be achieved.

The current waveform in DCM mode is shown in Fig.1. During MOSFET turn-on time, the current in the primary winding (Ipri) ramps up. When MOSFET turns off, the energy stored in the primary winding is transferred to the secondary side, so the peak current in the secondary winding is

$$I_{\text{sec}_{pk}} = I_{pri_{pk}} \times N_{ps} \tag{1}$$

The output average current is

$$I_{O} = \frac{I_{sec_pk}}{2} \times \frac{T_{demag}}{T_{P}} = \frac{1}{2} N_{PS} \frac{V_{CS}}{R_{sense}} \frac{T_{demag}}{T_{P}} \quad (2)$$

Because V_{CS} is constant and Tp is equal to two times Tdemag, the output current Io is constant.

Fig.1. The current waveform in DCM mode

3. CV Operation Mode

In CV mode, PN8386F uses a pulse to sample V_{FB} and it is hold until the next sampling. The sampled voltage is compared with $V_{REF_{CV}}$ and the error is amplified. The error amplified output reflects the load condition and controls the switching off time to regulate the output voltage, thus constant output voltage can be achieved.

The relationship between the output voltage and V_{REF_CV} is

$$Vo = (V_{REF_{CV}} \times \frac{R1 + R2}{R2}) \times \frac{N_s}{N_{AUX}}$$
(3)

 N_{s} means Secondary winding truns, N_{AUX}

means Auxiliary winding trun.

The PN8386F operates in PFM mode during heavy load mode, the peak current (Ipeak) of MOSFET and the chip frequency decreases while the output current decreases. When the switching frequency approaches to 25 kHz, the PN8386F enters PWM mode, the chip frequency decreases slowly while the output current decreases, the Ipeak decreases while the output current decreases. Therefore the PN8386F can avoid audible noise, while achieving high efficiency at 25% load

conditions. When Vcs decreases to 170mV, the PN8386F enters Standby mode. In this mode, Ipeak keeps around constant, the chip oscillator frequency decreases while the output current decreases. Fig.2 illustrates the relations of the switching frequency, Ipeak and Loading for PN8386F.

Fig.2. The Switching Frequency, V_{CS} VS. LOAD

4. Current Sensing and Leading Edge Blanking

Cycle-by-Cycle current limiting is offered in PN8386F. The switch current is detected by a sense resistor at CS pin. The CC set-point and maximum output power can be externally adjusted by external current sense resistor at CS pin. An internal leading edge blanking circuit chops off the sensed voltage spike at initial power MOSFET on-state so that the external RC filtering on sense input is no longer needed.

5. Programmable Cable Drop Compensation

In PN8386F, an offset voltage is generated at FB pin by an internal current flowing into the divider resister, as shown in Fig.3. The Cable Drop Compensation block compensates the voltage drop across the cable. As the load current decreases from full load to no load, the voltage drop across the cable decreases. It can be programmed by adjusting the external resistor R2 or R1 at FB pin. The maximum compensation is

$$\frac{V_{cable}}{V_O} = \frac{I_{cable} \times (R2 / / R1)}{2.5V} \tag{4}$$

Because of the influence of the chip's sampling position and parameters of the system, the actual maximum compensation may be less than theoretical value.

6. Reference Negative Temperature Compensation

As shown in Fig.3, the voltage of FB pin is

$$V_{FB} = K \left(V_O + \Delta V \right), K = \frac{R2 \times N_{AUX}}{(R1 + R2) \times N_S} \quad (5)$$

Where ΔV has a negative temperature coefficient, K is a constant.

In PN8386F, the voltage reference uses the negative temperature compensation technology. At room temperature, the voltage reference is 2.5V. The voltage reference (V_{REF_CV}) decreases while the temperature of chip increases. The reference negative temperature compensation block compensates the ΔV represented rectifier diode VF, thus the output voltage keeps constant at full range of temperature. The reference negative temperature compensation improves output precision.

7. Protection Control

The PN8386F has several self-protection functions, such as Cycle-by-Cycle current limiting (OCP), Over-Voltage Protection, Over-Temperature Protection, Feedback Loop open Protection, Output short circuit Protection, CS resistor open/short circuit Protection and Under Voltage Lockout on VDD. All protections are self-recovered.

Typical Application

Component Parameter and Layout Considerations:

- 1. VDD capacitor EC1 should be placed at the nearest place from the VDD pin and the GND pin.
- 2. It is suggested that the power supply diode and the R3 should be connected in series in order to improve the safety capability. The recommend value is 4.70hm.
- 3. It is suggested that the FB pin and the C1 should be connected in parallel in order to improve the anti-interference of the sampling network. The recommend value is 47pF.

Package Information

SOP8 Package Information

Notes:

- 1. This drawing is subjected to change without notice.
- 2. Body dimensions do not include mold flash or protrusion.

Tape and Reel Information

Notes:

- 1. This drawing is subjected to change without notice.
- 2. All dimensions are nominal and in mm.
- 3. This drawing is not in scale and for reference only. Customer can contact Chipown sales representative for further details.
- 4. The number of flange openings depends on the reel size and assembly site. This drawing shows an example only.

Important Notice

Wuxi Chipown Microelectronics Co. Ltd. reserves the right to make changes without further notice to any products or specifications herein. Wuxi Chipown Microelectronics Co. Ltd. does not assume any responsibility for use of any its products for any particular purpose, nor does Wuxi Chipown Microelectronics Co. Ltd assume any liability arising out of the application or use of any its products or circuits. Wuxi Chipown Microelectronics Co. Ltd does not convey any license under its patent rights or other rights nor the rights of others.